

Computer Organization and Architecture: A Pedagogical Aspect

Prof. Jatindra Kr. Deka

Dr. Santosh Biswas

Dr. Arnab Sarkar

Department of Computer Science & Engineering

Indian Institute of Technology, Guwahati

Lecture - 19

Handling Control Transfer Instructions

Welcome to the fifth unit of the module on control design. So, as discussed in the last unit that

from today we will be discussing on the special type of instructions, what are the control signal

involved in, and we will be mainly talking about control instructions which are of jump,

handling of function calls etcetera which we call as transfer instruction. So, this unit basically

we will be covering on control signals, microinstructions involving transfer instructions like

jump, call etcetera.

(Refer Slide Time: 01:00)

So, we will be talking after looking at the different type of control signals for general type of

instructions. In today’s unit, we are going to handle jump and jump, call etcetera which come

under the category of control transfer instructions.

597

(Refer Slide Time: 01:10)

So, basically in the units what is in the unit summary, we will first discuss about the unit

summary before going into the depth of the unit. Basically as you already know the control

transfer instructions are of two type conditional and unconditional sorry unconditional and

conditional as we shown in the cases in the slide. So, what is the unconditional jump instruction,

an unconditional jump instruction is very simple like jump go to that memory location where

the corresponding instruction is there, maybe you call a function so that is an unconditional

jump.

And what is the conditional jump, when you look at these flags and decide what to do like jump

on zero to some memory location 3030 where the next instruction is there. It will jump only if

the zero flag is set, so that way we can differentiate the means control transfer instruction as

conditional and unconditional. Basically now what are the basic steps involved or the basic

control instructions or microinstructions involved or the control signals involved in each of the

steps?

598

(Refer Slide Time: 02:06)

As we have already discussed in the last three units that basically the three steps that is the first

three steps basically involve fetching of the instruction. So, in this case what happens in the

step one basically we load the program into the bus, 𝑃𝐶 into the bus and we give it to the

memory address register, so that the corresponding instruction can be fetched. We make the

main memory in read mode and we get the value of the program or the instruction in the

memory data register in this third stage basically.

So, basically that is what is the thing and then we say that but here there are slight difference

in case of a jump instruction or transfer instructions. In general type of instructions, we take

the value of the program counter to the bus, put it in the address register, and then wait for the

corresponding instruction to be obtained in the memory data register. And also what we do, we

also try to increment the value of 𝑃𝐶 to the next value to point to the next instruction.

But in this case we do a slightly separate step over here that what we do? We actually also stop

the incrementing of the 𝑃𝐶 here, but also we store as we will see the requirement what is the

necessity. We also put the temporary value of 𝑃𝐶 into a temporary register 𝑌. We will see that

why it is required later because in the time at the same stage when you are trying to increment

the 𝑃𝐶 as well as we will have to store the value of the 𝑃𝐶 to a temporary register. We will see

that storage of the 𝑃𝐶𝑖𝑛 a temporal register is something different which we are doing in

transfer instruction. And we will see later see what is the importance of that.

599

Other things like set the MUX, so that the constant is added that is actually pointing to the next

instruction that remains the same. Then basically what else load the output of the ALU to a

temporal register that is 𝑃𝐶 = 𝑃𝐶 + 1, all these things will be similar. But only one extra

thing is basically the control signals in the first step load the value of the 𝑃𝐶 into the memory

address register, increments the value of PC that remains the same. Store it in a temporary

register 𝑌 is a special extra thing, which we do for the control instructions all other part remains

same. So, I am not elaborating.

The second stage is very similar basically bus value will go to 𝑃𝐶 that is 𝑃𝐶 = 𝑃𝐶 +

 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 that is the next transfer, output the contents of the temporary register to bus it is a

very simple. Halt the value of the 𝑃𝐶, halt the value till the memory says it is ok. Once it is

done, you can go ahead, this is very similar to the second stage.

(Refer Slide Time: 04:32)

The third stage is also very similar. The third stage basically says that the memory read is ok.

So, basically the output of the memory data register is going to the instruction register as simple

as the fetch. So, up to this is more or less similar that is you fetch the instruction and in the

instruction register; only one extra thing we do here you just keep it in mind that we will store

the value of program counter in a temporary register 𝑌. Now, from fourth step onwards things

to start changing basically.

Now, in this case, see previous case we have seen how to add, how to store from memory to

the registers, but here actually it is something going to a jumps space. For example, let us take

600

the instruction called jump unconditional to say 3030, then we want to jump to that memory

location that is what is the execution part here. So, in this case, what we have to do, we have

to somehow load the value of program counter in the next stage to 3030 that is what is the

execution to be done. Because when you want to execute some instruction which is the memory

location 3030, what we have to do is to simply load the value of 𝑃𝐶 to 3030 and your job will

be done. So, the execution part will take care of that.

So, what we do input the value of offset to CPU bus which is the second operand of the ALU

now we will see what we mean by an offset. The offset basically is a part of the instruction

register, which actually goes to the CPU, CPU bus basically. So, what is an offset, offset is

present value of 𝑃𝐶 − 𝑀 and you take the general the positive value out of it. So, if you

assume that the present value of the PC is equal to 10 for the time being let us assume that is

equal to 10, so your offset will be 3030 this 10 − 3030 the positive you are going to take it.

So, it will be 3020. So, this is what is actually your value of the offset 20, so that is what will

be given by the instruction register. So, instruction register will generate the value of 𝑃𝐶 ok.

Next, what do you do the offset is set the offset value is this one and it is saying the input value

of the CPU bus is the offset which is the second operand to the ALU. That means, what we are

going to generate the jump address, and we are going to load it to the 𝑃𝐶, that is what is the job

of the fourth step. So, what fourth step does fourth step is actually generate it’s offset, offset is

nothing but the present value of CPU, a present value of the program counter minus 𝑀 which

is your memory location to be jumped that value is called the offset, the positive always take

the positive value from it. So, in fact, so 3020 is value of the offset in this example. Now, what

do you do, so basically, so if you are considering single bus architecture, the 3020 value will

be an operand.

Next, what you do the input to the multiplexer is one. So, input the multiplexer is one, if you

remember the previous lecture that is now not going to take any constant it is going to take the

value from the temporary variable 𝑌. So, what is the temporary variable storing here, we

already discussed temporary variable 𝑌 is storing the value of 𝑃𝐶. As I told you this is only

extra thing that is happening in the first three instructions, when it’s a jump instruction; in all

other cases there is no involvement of any 𝑌 over here and the 𝑃𝐶 is directly updated. So, now,

𝑌 is another input to the ALU, it is the 𝑃𝐶, and this is your offset which is nothing but present

value of 𝑃𝐶 − 𝑀. Then actually you configure the ALU to do addition operation.

601

So, finally, what we are doing we are doing the content of 𝑃𝐶 which is in 𝑌 plus an offset. So,

basically what you are doing you are doing present value of 𝑃𝐶 − 𝑀 plus the value of 𝑃𝐶. So,

you are doing present value of 𝑃𝐶 − 𝑀 that value already is the offset plus 𝑃𝐶, in fact, you

are going to take the mod of it. So, basically what you are going we will cut out and you are

going to get the value of 𝑀. So, which is in this case is 3030 and which is actually loaded to a

temporal register that is your 𝑍. So, in fact, we use slightly a roundabout way means we are do

not directly take the value of 3030 and dump it into the CPU or dump it into the 𝑃𝐶 basically

we take an offset value and then we add the value of 𝑃𝐶 to it.

These are actually help this helps for relocating programs, because if I say that if I write the

value of 3030 and say you are getting loaded at memory location some memory location called

700, so there is always an offset and the relative addressing. To take care of the relative

addressing, so how this roundabout way of generating the address is present. I cannot go into

depth at this point on this part here because it is a part of something or assembly language

programming. So, in that because to maintain the relativity and relative addresses, we go out a

roundabout way rather than not directly taking the value of 3030 and loading it into the program

counter. We just take an offset value first and then we again add the value of offset value to

present value of program counter. So, they get canceled out, and you get the value of 3030. So,

it actually helps in relocating programs and some kind of other means relative addressing mode

which you want to read in details, you can find out from the any kind any book on system

programming.

(Refer Slide Time: 09:28)

602

So, next is very simple. As I told you now the 𝑍 that is the output of the ALU stored in 𝑍 which

is nothing but the present value of 𝑃𝐶 plus offset which is nothing but equal to 𝑀. So, after that

is already told that is nothing but value of 𝑃𝐶 − 𝑀 this gets cancelled and you get the 𝑀. And

basically this one you will now update 𝑍 will update to program counter, so you are now

jumping to that instruction and you are actually executing it. So, this is basically in summary

what happens for the control signals and the microinstructions that takes place in a jump kind

of an instruction. Anyway so that was a very brief summary that what happens and what are

the control instructions, what are the flow that takes place for a jump instruction or any kind of

control transfer.

(Refer Slide Time: 10:13)

So, what are the objectives of this unit, first objective is comprehension objective which tells

explain the issues related to design of control transfer instructions. Like what are the special

arrangement has to be made, if the 𝑃𝐶 has to be backed up what else extra instruction you

require. Like here for example, the 𝑃𝐶 is also backed up as a temporary register 𝑌 and not only

𝑃𝐶 equal to the increment is stored into the 𝑃𝐶, but along with that the updated value of

𝑃𝐶 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑌 is something extra. Then design use of flags while designing a control

transfer instruction like branch on zero, branch on positive, branch on negative etcetera how

the flag registers are used that explanation that synthesis you will be able to do. And finally,

the design objective design the instructions for call and return that is you will be able to design

instructions which are involved in function call and return.

603

(Refer Slide Time: 10:55)

Now, before we start the unit, let’s basically look at the single bus architecture, which is very

similar you have the program counter, then you have the memory address register, memory

data register very similar, then you have the ALU and there is a temporary register which call

𝑋 which is an input to this. There is slight difference I mean this is in the previous thing you

might have seen this as Y this we are calling it 𝑌𝑖𝑛 the previous lecture, and this we are calling

it 𝑍.

So, just way of nomenclature change let us keep it same for the ease of understanding or

continuity that is 𝑌 that temporary, register 𝑍 is the output of the ALU, this is mux is a constant

four, four actually just an example, it can be the size of the instruction. Then the ALU basically,

this is the ALU which does all addition, subtraction. Then you have the temporary register, this

is your register set from zero to 𝑛, instruction register and control logic. One very important

thing you have to note here is the flag register which is there, but actually I am again drawing

it here specially because it takes a very important role in any kind of a control instruction. So,

because zero, carry, jump on overflow etcetera all depends on the flag value set. So, this flag

register is playing a very important role in basically determining the control signal. So, that is

why these are special emphasis we have put on this one, the flag register which is mainly shown

over here.

604

(Refer Slide Time: 12:26)

Ok so, now with this let us start taking some examples of instructions that exactly see what

happens. The first instruction will be dealing in very details by looking at the bus diagram, bus

architecture, how the signals are moving; and other instructions we can have a very quick

overview. So, jump 30 unconditional jump; that means, the program counter should go to the

value of 3200. So, if you look at the memory this way. So, maybe this is 3200 is the memory

location some instruction may be there like say add or something, so that will be loaded to the

𝑃𝐶 and 𝑃𝐶 will do it. So, somehow you have to load the value of 𝑃𝐶 to this value. So, maybe

there is an instruction or it can be having a hard instruction or whatever. The idea is that I want

to jump this place, and I want to get this value out of this instruction or I want to execute this

instruction. So, 𝑃𝐶 actually will have the value here. So, it will make a jump instruction. So,

somehow I have to load the value of program counter to 3200 and your job is done, then

actually program counter will execute from memory location 3200.

605

(Refer Slide Time: 13:35)

Now, we will see how it happens basically. The first stage is already discussed program counter

out memory address in because why already we have discussed so much. So, let us think that

this is memory location 10, somewhere it is executing. So, basically program counter is equal

to 10, maybe the instruction called say jump 3200 is available at this place. So, what you have

to do, you have to load the value of memory location 10 has the instruction jump 3200. So,

already so many times I have discussed that this 10 value has to be load loaded into the memory

address register.

So, basically program counter will be output it will be loaded into the memory address register,

you have to make the memory in a read mode, because you want to read the instruction. Select

will be equal to 0 because you are select means that is the ALU mux select. So, it will be adding

a constant add and 𝑍𝑖𝑛 basically the value will be written. So, if we quickly look at it, look at

the structure what we are saying that value of program counter that is 10 will be fed to the

memory address register. And memory data register after a certain amount of time will get the

instruction which is in that program counter memory address in the memory, it will be going

to the instruction register that is what is a standard thing that happens.

Then and correspondingly 𝑃𝐶𝑜𝑢𝑡, memory address register in after the second stage it will be

𝑀𝐷𝑅𝑜𝑢𝑡 it will go to instruction register, but before that also some this will actually happen up

to certain amount of time because you have to give some time for the memory to respond. So,

it will actually happen in the third cycle. But in between we prepare for to increment the 𝑃𝐶,

606

so we make it the value of 0, so that the constant can be added. So, in fact, program counter

value is in fact, the 𝑃𝐶 value is over here in the bus because 𝑃𝐶𝑜𝑢𝑡 is there it is going to the

memory address register as well it is available in the bus and this is equal to 0.

So, constant one or four that depends on the instruction size is there and we are making 𝑍𝑖𝑛

that means, here you have to you have 𝑃𝐶 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 that is four or whatever that value is

ready. And whenever we say 𝑍𝑜𝑢𝑡 means it is ready. So, in the second stage actually we will

dump it over the PC that is going to happen. So, that is what program counter value will go to

the memory address register read it, select zero means keep the value constant to be added, add

is the mode, and 𝑍𝑖𝑛 means output of the ALU will be stored in 𝑍.

Next, what do you do 𝑃𝐶𝑖𝑛; that means, already the arithmetic logic unit has dumped the value

of 𝑃𝐶 plus constant in Z. So, you are making 𝑍𝑜𝑢𝑡, and you are giving it to the 𝑃𝐶𝑖𝑛 that is 𝑃𝐶

has been incremented and we are waiting till the memory is ready, so that the instruction is

dumped into the memory buffer register in third stage. Extra thing again I am repeating an extra

thing that is 𝑌𝑖𝑛 is very special in jump instruction this was not there in the any kind of add,

load or store instruction. Now, we will see what is specialty about 𝑌𝑖𝑛 that is 𝑍𝑜𝑢𝑡 and 𝑌𝑖𝑛

together; that means, we are having 𝑍𝑜𝑢𝑡; 𝑍𝑜𝑢𝑡 is having nothing but it is having 𝑃𝐶 = 𝑃𝐶 +

 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 that is the next value of the program counter. We always store it in PC that is

standard, but again also we are storing in 𝑊, what is that extra and how it will help.

So, if you look at it program is constant basically it is going to 𝑃𝐶 we always store it because

now 𝑃𝐶 is going to point to the next instruction. But for the time being also we are dumping it

to 𝑌, so that is actually called 𝑌𝑖𝑛 that is special, that 𝑃𝐶 = 𝑃𝐶 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is dumped as

well as to the 𝑃𝐶 as well as to the temporary register, we will see why it will be required. I can

just give you a very basic idea of why because the present value of 𝑃𝐶 may be say ten will be

stored over here and after that we the offset will be given to the second block.

So, in that case, what happen this is the present value of 𝑃𝐶 + 𝑜𝑓𝑓𝑠𝑒𝑡 will again give you the

value offset which will coming which will come later the offset will be coming from the

instruction register it will be added to the value of 𝑃𝐶 and you are going to get the value jump

address. Already we have seen how to calculate the jump address by adding the present value

of 𝑃𝐶 + 𝑜𝑓𝑓𝑠𝑒𝑡, because we have to have add the value of 𝑃𝐶 not with a constant, but this

time with an offset, so we have to have the value of 𝑃𝐶 stored in a temporary register.

607

For all other cases, if you member the value for the first case that is you have to increment 𝑃𝐶

what you can do, you can load the value of 𝑃𝐶𝑖𝑛 the bus and you can take the constant over

here. So, one operand is constant and another operand is the 𝑃𝐶, but in this case one operand

is coming from the instruction register that is the offset and another one is actually your 𝑃𝐶.

So, how can I have two things going to the ALU together. You could have done it is that you

could have taken the value of offset and dumped it in 𝑌, and you could have taken the value of

program counter in the bus that is also possible. That you take that you store the instruction

register offset in 𝑌 and then you just load the value of 𝑃𝐶𝑖𝑛 the bus and you can do it add it.

Another way is that you store the value of program counter 𝑃𝐶𝑖𝑛, 𝑌 and load the value of offset

and that is actually a simpler way of doing it.

Because in the second stage you are anyway dumping the value of 𝑃𝐶𝑖𝑛 the updated value of

𝑃𝐶𝑖𝑛 the program counter register. Same time, hand in hand you just take the value in 𝑌 and

store it after that you just take the value of 𝐼𝑅𝑖𝑛 the bus and add it that is a simpler way of doing

it rather than storing the 𝑃𝐶 first in the program counter on the that is updated value of 𝑃𝐶𝑖𝑛 this

one you are storing it. Then after some amount of time you do not go for this you remove this,

you do not update the value of 𝑌 with this, you take in fact the offset and you load it over here

and then again take the 𝑃𝐶 roundabout way. So, what we do we take a simplistic approach.

So, what are the simplistic approach the simply approach is, first load the value of program

counter in the memory address register that this what we do, and make this is zero, so that the

constant comes over here and the 𝑃𝐶 is already over here. So, this is equal to 𝑃𝐶 +

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and this was our 𝑍 basically. So, 𝑍𝑖𝑛 so the 𝑍 will actually have the value of program

updated program counter, then you in the second stage you make 𝑍𝑜𝑢𝑡. So, it will go into the

𝑃𝐶 that is the updated value hand in hand also you dump the value of 𝑌_𝑖𝑛 the temporary

register 𝑌 you dump the value of program counter updated program counter. And next stage

you take the value of 𝐼𝑅𝑖𝑛 the bus and that is the offset from the 𝐼𝑅 and add it. So, up to second

stage, second stage, it is simple updated program counter value goes to 𝑃𝐶𝑖𝑛 addition you are

also storing the value of updated program counter in 𝑌.

608

